翻訳と辞書
Words near each other
・ Gradešnica
・ Gradež
・ Gradež, Velike Lašče
・ Grade–Ruan
・ Gradgrind
・ Gradhiva
・ Gradian
・ Gradiant (Galician Research and Development Center in Advanced Telecommunications)
・ Gradiconus
・ Gradidge
・ Gradient
・ Gradient (disambiguation)
・ Gradient analysis
・ Gradient Analytics
・ Gradient boosting
Gradient conjecture
・ Gradient copolymers
・ Gradient descent
・ Gradient Domain Image Processing
・ Gradient enhanced NMR spectroscopy
・ Gradient method
・ Gradient multilayer nanofilm
・ Gradient network
・ Gradient noise
・ Gradient oven tester
・ Gradient pattern analysis
・ Gradient Salience Model
・ Gradient theorem
・ Gradient well-formedness
・ Gradient-index optics


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gradient conjecture : ウィキペディア英語版
Gradient conjecture
In mathematics, the gradient conjecture, due to René Thom, was proved in 2000 by three Polish mathematicians, Krzysztof Kurdyka (University of Savoie, France), Tadeusz Mostowski (Warsaw University, Poland) and Adam Parusiński (University of Angers, France). It states that given a real-valued analytic function ''f'' defined on R''n'' and a trajectory ''x''(''t'') of the gradient vector field of ''f'' having a limit point ''x''0 ∈ R''n'', where ''f'' has an isolated critical point at ''x''0, there exists a limit (in the projective space PR''n-1'') for the secant lines from ''x''(''t'') to ''x''0, as ''t'' tends to zero.
==References==

*A published statement of the conjecture: R. Thom, Problèmes rencontrés dans mon parcours mathématique: un bilan, Publ. Math. IHES 70 (1989), 200-214. (This gradient conjecture due to René Thom was in fact well-known among specialists by the early 70's, having been often discussed during that period by Thom during his weekly seminar on singularities at the IHES.)
*The paper where it is proved: Annals of Math. 152 (2000), 763-792. It is available (here ).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gradient conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.